Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Microbial detoxification of eleven food and feed contaminating trichothecene mycotoxins.

Identifieur interne : 000B52 ( Main/Exploration ); précédent : 000B51; suivant : 000B53

Microbial detoxification of eleven food and feed contaminating trichothecene mycotoxins.

Auteurs : Rafiq Ahad [Canada] ; Ting Zhou [Canada] ; Dion Lepp [Canada] ; K Peter Pauls [Canada]

Source :

RBID : pubmed:28298196

Descripteurs français

English descriptors

Abstract

BACKGROUND

Contamination of agricultural commodities with multiple trichothecene mycotoxins, produced by toxigenic Fusarium species, is a food safety issue, which greatly affects grain production and marketing worldwide. Importantly, exposure to multiple trichothecenes may increase toxicity in animals due to their synergistic and/or additive effects. To address the problem this study aimed to achieve a novel biological trait capable of detoxifying various food and feed contaminating trichothecenes under aerobic and anaerobic conditions and wide range of temperatures.

RESULTS

A highly enriched microbial consortium (called DX100) capable of transforming eleven trichothecenes to significantly less toxic de-epoxy forms was achieved after prolonged incubation of soil microbial culture with 200 μg/mL deoxynivalenol (DON). DX100 demonstrated de-epoxidation activity under aerobic and anaerobic conditions, a greater range of temperatures and around neutral pH. The consortium contains 70% known and 30% unknown bacterial species, dominated by Stenotrophomonas species. Probably novel bacteria including strains of Stenotrophomonas and Alkaliphilus-Blautia species complex could be involved in aerobic and anaerobic de-epoxidation of trichothecenes, respectively. DX100 showed rapid and stable activity by de-epoxidizing 100% of 50 μg/mL deoxynivalenol at 48 h of incubation and retaining de-epoxidation ability after 100 subcultures in mineral salts broth (MSB). It was able to de-epoxidize high concentration of DON (500 μg/mL), and transformed ten more food contaminating trichothecenes into de-epoxy forms and/or other known/unknown compounds. Microbial de-epoxidation rate increased with increasing trichothecene concentrations in the broth media, suggesting that DX100 maintains a robust trichothecene detoxifying mechanism. Furthermore, the nature of microbial de-epoxidation reaction and inhibition of the reaction by sodium azide and the finding that bacterial cell culture lysate retained activity suggests that certain cytoplasmic reductases may be responsible for the de-epoxidation activity.

CONCLUSIONS

This study reports the enrichment procedure for obtaining an effective and stable microbial consortium DX100 capable of de-epoxidizing several food contaminating trichothecene mycotoxins. DX100, which has de-epoxidation ability under wide range of conditions, represents a unique enzymatic source which has great industrial potential for reducing contamination of foods/feeds with multiple trichothecenes, and minimizing their synergistic/additive cytotoxic effects on consumer health.


DOI: 10.1186/s12896-017-0352-7
PubMed: 28298196
PubMed Central: PMC5351178


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Microbial detoxification of eleven food and feed contaminating trichothecene mycotoxins.</title>
<author>
<name sortKey="Ahad, Rafiq" sort="Ahad, Rafiq" uniqKey="Ahad R" first="Rafiq" last="Ahad">Rafiq Ahad</name>
<affiliation wicri:level="1">
<nlm:affiliation>Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, N1G 5C9, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, N1G 5C9</wicri:regionArea>
<wicri:noRegion>N1G 5C9</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Plant Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1</wicri:regionArea>
<wicri:noRegion>N1G 2W1</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Ting" sort="Zhou, Ting" uniqKey="Zhou T" first="Ting" last="Zhou">Ting Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, N1G 5C9, Canada. Ting.Zhou@agr.gc.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, N1G 5C9</wicri:regionArea>
<wicri:noRegion>N1G 5C9</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lepp, Dion" sort="Lepp, Dion" uniqKey="Lepp D" first="Dion" last="Lepp">Dion Lepp</name>
<affiliation wicri:level="1">
<nlm:affiliation>Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, N1G 5C9, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, N1G 5C9</wicri:regionArea>
<wicri:noRegion>N1G 5C9</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pauls, K Peter" sort="Pauls, K Peter" uniqKey="Pauls K" first="K Peter" last="Pauls">K Peter Pauls</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Plant Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1</wicri:regionArea>
<wicri:noRegion>N1G 2W1</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28298196</idno>
<idno type="pmid">28298196</idno>
<idno type="doi">10.1186/s12896-017-0352-7</idno>
<idno type="pmc">PMC5351178</idno>
<idno type="wicri:Area/Main/Corpus">000C27</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C27</idno>
<idno type="wicri:Area/Main/Curation">000C27</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C27</idno>
<idno type="wicri:Area/Main/Exploration">000C27</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Microbial detoxification of eleven food and feed contaminating trichothecene mycotoxins.</title>
<author>
<name sortKey="Ahad, Rafiq" sort="Ahad, Rafiq" uniqKey="Ahad R" first="Rafiq" last="Ahad">Rafiq Ahad</name>
<affiliation wicri:level="1">
<nlm:affiliation>Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, N1G 5C9, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, N1G 5C9</wicri:regionArea>
<wicri:noRegion>N1G 5C9</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Plant Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1</wicri:regionArea>
<wicri:noRegion>N1G 2W1</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Ting" sort="Zhou, Ting" uniqKey="Zhou T" first="Ting" last="Zhou">Ting Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, N1G 5C9, Canada. Ting.Zhou@agr.gc.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, N1G 5C9</wicri:regionArea>
<wicri:noRegion>N1G 5C9</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lepp, Dion" sort="Lepp, Dion" uniqKey="Lepp D" first="Dion" last="Lepp">Dion Lepp</name>
<affiliation wicri:level="1">
<nlm:affiliation>Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, N1G 5C9, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, N1G 5C9</wicri:regionArea>
<wicri:noRegion>N1G 5C9</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pauls, K Peter" sort="Pauls, K Peter" uniqKey="Pauls K" first="K Peter" last="Pauls">K Peter Pauls</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Plant Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1</wicri:regionArea>
<wicri:noRegion>N1G 2W1</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC biotechnology</title>
<idno type="eISSN">1472-6750</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animal Feed (microbiology)</term>
<term>Decontamination (methods)</term>
<term>Food Contamination (prevention & control)</term>
<term>Food Microbiology (methods)</term>
<term>Food Safety (MeSH)</term>
<term>Fusarium (metabolism)</term>
<term>Microbial Consortia (physiology)</term>
<term>Mycotoxins (isolation & purification)</term>
<term>Mycotoxins (metabolism)</term>
<term>Trichothecenes (isolation & purification)</term>
<term>Trichothecenes (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Aliment pour animaux (microbiologie)</term>
<term>Consortiums microbiens (physiologie)</term>
<term>Contamination des aliments (prévention et contrôle)</term>
<term>Décontamination (méthodes)</term>
<term>Fusarium (métabolisme)</term>
<term>Microbiologie alimentaire (méthodes)</term>
<term>Mycotoxines (isolement et purification)</term>
<term>Mycotoxines (métabolisme)</term>
<term>Sécurité des aliments (MeSH)</term>
<term>Trichothécènes (isolement et purification)</term>
<term>Trichothécènes (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Mycotoxins</term>
<term>Trichothecenes</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Mycotoxines</term>
<term>Trichothécènes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Fusarium</term>
<term>Mycotoxins</term>
<term>Trichothecenes</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Decontamination</term>
<term>Food Microbiology</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Aliment pour animaux</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Animal Feed</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Fusarium</term>
<term>Mycotoxines</term>
<term>Trichothécènes</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Décontamination</term>
<term>Microbiologie alimentaire</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Consortiums microbiens</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Microbial Consortia</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Food Contamination</term>
</keywords>
<keywords scheme="MESH" qualifier="prévention et contrôle" xml:lang="fr">
<term>Contamination des aliments</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Food Safety</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Sécurité des aliments</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Contamination of agricultural commodities with multiple trichothecene mycotoxins, produced by toxigenic Fusarium species, is a food safety issue, which greatly affects grain production and marketing worldwide. Importantly, exposure to multiple trichothecenes may increase toxicity in animals due to their synergistic and/or additive effects. To address the problem this study aimed to achieve a novel biological trait capable of detoxifying various food and feed contaminating trichothecenes under aerobic and anaerobic conditions and wide range of temperatures.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>A highly enriched microbial consortium (called DX100) capable of transforming eleven trichothecenes to significantly less toxic de-epoxy forms was achieved after prolonged incubation of soil microbial culture with 200 μg/mL deoxynivalenol (DON). DX100 demonstrated de-epoxidation activity under aerobic and anaerobic conditions, a greater range of temperatures and around neutral pH. The consortium contains 70% known and 30% unknown bacterial species, dominated by Stenotrophomonas species. Probably novel bacteria including strains of Stenotrophomonas and Alkaliphilus-Blautia species complex could be involved in aerobic and anaerobic de-epoxidation of trichothecenes, respectively. DX100 showed rapid and stable activity by de-epoxidizing 100% of 50 μg/mL deoxynivalenol at 48 h of incubation and retaining de-epoxidation ability after 100 subcultures in mineral salts broth (MSB). It was able to de-epoxidize high concentration of DON (500 μg/mL), and transformed ten more food contaminating trichothecenes into de-epoxy forms and/or other known/unknown compounds. Microbial de-epoxidation rate increased with increasing trichothecene concentrations in the broth media, suggesting that DX100 maintains a robust trichothecene detoxifying mechanism. Furthermore, the nature of microbial de-epoxidation reaction and inhibition of the reaction by sodium azide and the finding that bacterial cell culture lysate retained activity suggests that certain cytoplasmic reductases may be responsible for the de-epoxidation activity.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This study reports the enrichment procedure for obtaining an effective and stable microbial consortium DX100 capable of de-epoxidizing several food contaminating trichothecene mycotoxins. DX100, which has de-epoxidation ability under wide range of conditions, represents a unique enzymatic source which has great industrial potential for reducing contamination of foods/feeds with multiple trichothecenes, and minimizing their synergistic/additive cytotoxic effects on consumer health.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28298196</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>06</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1472-6750</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>17</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>03</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>BMC biotechnology</Title>
<ISOAbbreviation>BMC Biotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Microbial detoxification of eleven food and feed contaminating trichothecene mycotoxins.</ArticleTitle>
<Pagination>
<MedlinePgn>30</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12896-017-0352-7</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">Contamination of agricultural commodities with multiple trichothecene mycotoxins, produced by toxigenic Fusarium species, is a food safety issue, which greatly affects grain production and marketing worldwide. Importantly, exposure to multiple trichothecenes may increase toxicity in animals due to their synergistic and/or additive effects. To address the problem this study aimed to achieve a novel biological trait capable of detoxifying various food and feed contaminating trichothecenes under aerobic and anaerobic conditions and wide range of temperatures.</AbstractText>
<AbstractText Label="RESULTS">A highly enriched microbial consortium (called DX100) capable of transforming eleven trichothecenes to significantly less toxic de-epoxy forms was achieved after prolonged incubation of soil microbial culture with 200 μg/mL deoxynivalenol (DON). DX100 demonstrated de-epoxidation activity under aerobic and anaerobic conditions, a greater range of temperatures and around neutral pH. The consortium contains 70% known and 30% unknown bacterial species, dominated by Stenotrophomonas species. Probably novel bacteria including strains of Stenotrophomonas and Alkaliphilus-Blautia species complex could be involved in aerobic and anaerobic de-epoxidation of trichothecenes, respectively. DX100 showed rapid and stable activity by de-epoxidizing 100% of 50 μg/mL deoxynivalenol at 48 h of incubation and retaining de-epoxidation ability after 100 subcultures in mineral salts broth (MSB). It was able to de-epoxidize high concentration of DON (500 μg/mL), and transformed ten more food contaminating trichothecenes into de-epoxy forms and/or other known/unknown compounds. Microbial de-epoxidation rate increased with increasing trichothecene concentrations in the broth media, suggesting that DX100 maintains a robust trichothecene detoxifying mechanism. Furthermore, the nature of microbial de-epoxidation reaction and inhibition of the reaction by sodium azide and the finding that bacterial cell culture lysate retained activity suggests that certain cytoplasmic reductases may be responsible for the de-epoxidation activity.</AbstractText>
<AbstractText Label="CONCLUSIONS">This study reports the enrichment procedure for obtaining an effective and stable microbial consortium DX100 capable of de-epoxidizing several food contaminating trichothecene mycotoxins. DX100, which has de-epoxidation ability under wide range of conditions, represents a unique enzymatic source which has great industrial potential for reducing contamination of foods/feeds with multiple trichothecenes, and minimizing their synergistic/additive cytotoxic effects on consumer health.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ahad</LastName>
<ForeName>Rafiq</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, N1G 5C9, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Ting</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, N1G 5C9, Canada. Ting.Zhou@agr.gc.ca.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lepp</LastName>
<ForeName>Dion</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, N1G 5C9, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pauls</LastName>
<ForeName>K Peter</ForeName>
<Initials>KP</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>03</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Biotechnol</MedlineTA>
<NlmUniqueID>101088663</NlmUniqueID>
<ISSNLinking>1472-6750</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009183">Mycotoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014255">Trichothecenes</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000821" MajorTopicYN="N">Animal Feed</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003666" MajorTopicYN="N">Decontamination</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005506" MajorTopicYN="N">Food Contamination</DescriptorName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005516" MajorTopicYN="N">Food Microbiology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059022" MajorTopicYN="N">Food Safety</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005670" MajorTopicYN="N">Fusarium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059013" MajorTopicYN="N">Microbial Consortia</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009183" MajorTopicYN="N">Mycotoxins</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014255" MajorTopicYN="N">Trichothecenes</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Biodetoxification</Keyword>
<Keyword MajorTopicYN="Y">Food contamination</Keyword>
<Keyword MajorTopicYN="Y">Fusarium mycotoxins</Keyword>
<Keyword MajorTopicYN="Y">Microbial de-epoxidation</Keyword>
<Keyword MajorTopicYN="Y">Trichothecenes</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>08</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>03</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>6</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28298196</ArticleId>
<ArticleId IdType="doi">10.1186/s12896-017-0352-7</ArticleId>
<ArticleId IdType="pii">10.1186/s12896-017-0352-7</ArticleId>
<ArticleId IdType="pmc">PMC5351178</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Bacteriol Rev. 1972 Jun;36(2):146-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4557166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Hyg Environ Health. 2009 Jul;212(4):347-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18805056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Sci Food Agric. 2013 Sep;93(12):2892-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23670211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2013 Jul;39(7):907-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23846184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1948 Feb;172(2):599-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18901179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Toxicol Environ Health B Crit Rev. 2005 Jan-Feb;8(1):39-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15762554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Lett. 2006 Jul 1;164(2):167-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16442754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Addit Contam. 2005 Apr;22(4):369-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16019807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1983 Jul;46(1):120-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6614901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1998 Oct 1;257(1):160-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9799115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Chem Toxicol. 2004 Apr;42(4):619-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15019186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Asia Pac J Clin Nutr. 2007;16 Suppl 1:95-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17392084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2008 Nov;9(11):2062-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19330061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1944 Mar;47(3):221-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16560767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2008 Nov;9(11):2127-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19330063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Basic Microbiol. 2004;44(2):147-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15069674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2005 Sep;60(9):1182-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16018887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxins (Basel). 2015 Jun 09;7(6):2071-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26067367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Appl Pharmacol. 2013 Oct 1;272(1):191-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23735874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2011 Oct;5(10):1571-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21472016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Toxicol. 2010 Sep;84(9):663-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20798930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1992 Dec;58(12):3857-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1476428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2012;29(3):423-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22264215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2010 Apr;27(4):510-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20234966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Poult Sci. 2015 Jun;94(6):1298-315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25840963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2011 Aug;91(3):491-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21691789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1972 Feb 10;247(3):972-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4550766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycopathologia. 2006 Jan;161(1):43-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16389484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2010 Jun 24;10:182</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20576129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Microbiol Biotechnol. 2012 Jan;28(1):7-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22806774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Addit Contam. 2002 Apr;19(4):379-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11962696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1991 Apr;57(4):932-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Chem Toxicol. 1988 Oct;26(10):823-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3220324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Apr 25;7:561</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27199907</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Ahad, Rafiq" sort="Ahad, Rafiq" uniqKey="Ahad R" first="Rafiq" last="Ahad">Rafiq Ahad</name>
</noRegion>
<name sortKey="Ahad, Rafiq" sort="Ahad, Rafiq" uniqKey="Ahad R" first="Rafiq" last="Ahad">Rafiq Ahad</name>
<name sortKey="Lepp, Dion" sort="Lepp, Dion" uniqKey="Lepp D" first="Dion" last="Lepp">Dion Lepp</name>
<name sortKey="Pauls, K Peter" sort="Pauls, K Peter" uniqKey="Pauls K" first="K Peter" last="Pauls">K Peter Pauls</name>
<name sortKey="Zhou, Ting" sort="Zhou, Ting" uniqKey="Zhou T" first="Ting" last="Zhou">Ting Zhou</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B52 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B52 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28298196
   |texte=   Microbial detoxification of eleven food and feed contaminating trichothecene mycotoxins.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28298196" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020